srijeda, 31. listopada 2018.

Početna
(Home)



Ovo je hrvatski blog o čuvenim Yamahinim Virago motociklima - seriji jednog od najpopularnijih i najdugovječnijih cruiser/chopper motocikala, također vrlo popularnih u Hrvatskoj i šire na ovim prostorima.

Ovdje ćete naći mnoštvo korisnih informacija, posebice tehničkih, koji mogu pomoći oko održavanja, popravaka ili kupovine Virago i drugih motocikla. Yamahini Virago motocikli su tehnički relativno jednostavni, ali pouzdani i robusni, neki proizvedeni prije i više od 30 godina, ali rade sasvim solidno i dan danas te plijene pozornost svojom pojavom.

Podaci na ovom blogu sakupljani su kroz duže vrijeme iz različitih izvora kao što su: web stranice, online forumi, katalozi dijelova, servisna i vlasnička uputstva, časopisi, knjige i dr., ali i osobnim iskustvima u komunikaciji i suradnji s drugim vlasnicima Virago motocikala i majstorima mehaničarima za motocikle (posebne zahvale gdinu Zlatku Lisiću, majstoru s dugogodišnjim Virago iskustvom od kojega sam dosta naučio). Kao vlasnik više Virago motocikala, koje sam imao tijekom vremena, imao sam prilike i osobno rastavljati i popravljati svoje motore, pa time dolaze i iskustva iz prve ruke koja su ovdje ospisana.


Ovo je blog koji ću popunjavati već kako nađem slobodnog vremena i budem od volje. Kako osobno imam Virago xv535, tako će taj model na ovom blogu biti neminovno nešto zastupljeniji. Žalim zbog subjektivnosti, ali u pitanju je zapravo izvjesna objektivnost jer s tim modelom imam najviše iskustva.

"ljubav na prvi pogled"
Određen broj tehničkih dijagrama i skica prikazanih ovdje su moji osobni uradci dok su fotografije Virago motocikala i dijelova (iako preuređene za ovaj blog) ili osobne ili skinute sa Interneta.

Yamaha xv535 Virago - najzastupljeniji predstavnik Virago porodice na europskom tržištu

Napomena: Tvrtka Yamaha je 1955. godine izdvojila svoju grupaciju za proizvodnju motocikala u zasebnu kompaniju Yamaha Motors, ali zbog jednostavnosti na ovom blogu, kad se govori o Yamahi, zapravo se misli na tvrtku Yamaha Motors.







Prijedlozi o poboljšanju ovog bloga, o ispravcima netočnih ili dodavanju novih podataka i sl., svakako su dobrodošli. Također ostavite svoje komentare ili mišljenja direktno na ovim stranicama dolje.


Home


This is Croatian blog about famous Yamaha Virago motorcycles - a series of one of the most popular and long lasting cruiser/chopper motorcycles, also very popular here in Croatia and in this whole region.

Here you will find a lot of useful information, especially technical ones, which can help you with maintenance, repair and purchase of Virago and other motorcycles. Yamaha Virago motorcycles are technically relatively simple, yet reliable and robust, some of them manufactured more than 30 years ago, but they work quite solidly to this days and capture their attention with their appearance.

Data on this blog has been collected during the longer period and from different sources like: websites, online forums, parts catalogs, service and owner's manuals, magazines, books, etc. but also from personal experiences and communication or cooperation with other Virago owners and motorcycle mechanics (special thanks to Mr Zlatko Lisić, the mechanic with many years of experience in repairing Viragos from whom I learned a lot). As the owner of several Virago motorcycles, which I have had over time, I have had the opportunity to personally disassemble and repair my engines, and with that come first hand experiences that have been posted here.

This is blog which I will manage when I find spare time and when I'm in the mood for that. As personally I've got Virago xv535, this model will inevitably be presented on this blog more than other models. I'm sorry for this subjectivity, but with this model I do have experiences the most.

"love on first sight"

A certain number of technical diagrams and schemas presented here are my own works while photos of Virago bikes and parts (although prepared for this blog) are my own or downloaded from Internet.

Yamaha xv535 Virago - the most representative model on European market

Note: In 1955. Yamaha corporation separated its motor production division into separate company called Yamaha Motors, but for the sake of simplicity when I refer on this blog to Yamaha I mean about Yamaha Motors corporation.





Suggestions for improvement of this blog as well as corrections of wrong data are welcome. Help with English translation and corrections is needed too. You can put all your comments bellow in comment area of this blog.


subota, 20. listopada 2018.

Akumulator


Napon akumulatora

Potpuno napunjen akumulator ima napon od barem 12,6 V. Kod vrijednosti od 12,2 V napola je još pun, a kod 11,9 V gotovo je prazan. Akumulator se puni naponom od 14,2 V do 14,4 V (nikako ne naponom višim od 14,7 V). Akumulator se ne bi smio isprazniti tako da mu napon padne ispod 10,8 V (1,8 V po ćeliji).

Struja akumulatora

Akumulator se treba puniti strujom kojoj je jačina brojčano 10%-20% iznosa njenog kapaciteta. Dakle, akumulator kapaciteta 10 Ah treba se puniti strujom jačne od 1 A do 2 A ili nešto manjom, ali ne jačom strujom!

Yuasa 12AL-A2
12 označava 12 Ah
AL označava model (dimenzije)
A2 označava tip priključnica

Rad akumulatora

Akumulator ima dvije elektrode (dvije priključnice) gdje je jedna (katoda = pozitivni + pol) spojena na ploče od olovnog dioksida (PbO2) dok je druga elektrtoda (anoda = negativni - pol) spojena na ploče od čistog olova (Pb) i one su zajedno uronjene u sumpornu kiselinu (H2SO4 koncentracije 1.28 kg/l za  posve napunjen akumulator).

Prilikom pražnjenja akumulatora, sumpor iz sumporne kiseline se taloži na pločama obiju elektroda (sulfacija) i kristalizira (nastaje olovni sulfat PbSO4), a u tom procesu dodatno još nastaje voda koja smanjuje koncentraciju sumporne kiseline (sa 1.28 kg/l za pun akumulator do 1.1 kg/l za prazni akumulator).

Kemijska reakcija pražnjenja akumulatora prikaza je sljedećom kemijskom relacijom:

Slika preuzeta sa https://www.schrack.hr


PbO2 (katoda) + 2H2SO4 (sumporna kiselina) + Pb (anoda) --> 2PbSO4 (olovni sulfat) + H2O (voda)

Obrnuti proces dešava se kod punjenja akumulatora, kristalizirani sulfati se rastvaraju (desulfacija) i ispušteni sumpor povećava koncentraciju sumporne kiseline.

Prema tome, gustoća elektrolita je pouzdan parametar za određivanje energije u akumulatoru. U praksi, gustoća elektrolita može se lako izmjeriti korištenjem bometera, refraktometara, i sl.

Pražnjenje akumulatora

Uobičajeno je da se akumulator prazni i kad na njega nije spojen potrošač: npr. GEL akumulatori se prazne 2% mjesečno na temperaturi od 20°C. Za svakih dodatnih 10°C pražnjenje se udvostručuje.

Kada je akumulator posve pun na elektrodama ne bi trebalo biti kristaliziranih olovnih sulfata. No kod svakog ciklusa punjenja i pražnjenja, mala količina sulfata ipak ostaje na eketrodama, a taj sulfat je glavni razlog starenja akumulatora, pa se tako akumulatori trebaju uvijek držati posve napunjenima. Ako se prazni akumulator ostavi i ne napuni dulje vrijeme, te kristalne strukture sulfata očvrsnu toliko da ih se kasnije više ne može razbiti punjenjem. Ista situacija se dešava ako se akumulator ne napuni duže vrijeme, tako da dio ploča elektroda ostaje nepovratno sulfiziran i nataloženi sloj ne može se punjenjem pretvoriti u čisto olovo ili olovni dioksid. Rezultat je smanjena površina elektroda izložena elektrolitu, čime se trajno smanjuje kapacitet akumulatora.

Duboko pražnjenje

Dubokim pražnjenjem klasičnog akumulatora smatra se pražnjenje do nekih 50% negovog kapaciteta i pražnjenje ispod te razine nije dobro za klasični akumulator. Tako akumulator kapaciteta 60 Ah ne bi smio potrošiti više od 30 Ah. Postoje specijalni akumulatori za duboko pražnjenje (tzv. deep cycle) koji su stvoreni upravo za duboka pražnjenja kod kojih se može isprazniti čak 80% njihovog kapaciteta (ali ni oni ne smiju biti ispražnjeni do kraja). Duboko pražnjenje oštećuje akumulator na takav način da se aktivni materijal trajno uklanja s ploča elektroda, smanjujući provodnost. Crni i smeđi talog na dnu akumulatora prvi je znak da je akumulator često doživio duboka pražnjenja.

Erozija i korozija ploča

Tijekom normalnog korištenja i punjenja nije moguće izbjeći da se ne odvoji dio olova ili olovnog oksida sa elektroda, tako da se volumen elektroda s vremenom smanjuje - to je erozija ploča elektroda. Povećanna ili ubrzana erozija ploča naziva se korozija.

Materijal nastao erozijom ploča taloži se na dnu i postaje s vremenom sve deblji. Kako je to materijal koji je električki vodljiv, njegov debeli talog može električki povezati elektrode i uzrokovati kratki spoj među pločama akumulatora.

Normalna erozija se kontrolira ograničavanjem dubine pražnjenja, smanjenjem broja ciklusa pražnjenja, i brigom o radnoj temperaturi akumulatora. Suprotno tome, povećana erozija uzrokovana je dugim prepunjavanjem akumulatora. Ali i obrnuto, punjenje s premalom strujom rezultirat će time da ioni u elektrolitu neće biti u stanju kvalitetno rastvoriti nataloženi olovni sulfat sa ploča elektroda.

Stratifikacija baterije

Stratifikacija (razdvajanje na slojeve) je proces koji se dešava kada se akumulator puni s nedovoljno jakom strujom (ili se nikad ne puni do razine veće od 2/3 njegovog kapaciteta). Pri malim jačinama struje punjenja, premali protok iona neće dovoljno miješati kiselinu elektrolita tako da će se voda i kiselina razdvojiti u slojeve jer teža kiselina pada na dno dok voda ostaje gore. Koncentracija kiseline pri vrhu postaje premalena, a pri dnu prevelika što uzrokuje da se na pločama gore zadržava sulfat, a donji dio ploča pojačano erodira.

Kod akumulatora s tekućim elektrolitom stratifikacija se može izbjeći namjernim punjenjem kratkim impulsima s povećanim naponom kod kojih plin u elektrolitu stvara mjehuriće kojim se elektrolit miješa. To je princip koji koriste pametni punjači u impulsnom modu punjenja.

Kod zatvorenih akumulatora (netekući elektrolit, npr. GEL) nema pojave stratifikacije.

Peukertov zakon

Peukertov (čitaj Pojkertov) zakon opisuje kako kapacitet akumulatora ovisi o jačini struje kojom se akumulator prazni. Kapacitet akumulatora nije linearan s obzirom na struju pražnjenja. Npr. akumulator s nazivnim kapacitetom od 60 Ah implicira da ako se prazni strujom od 3 A (20 puta manjom od iznosa nazivnog kapaciteta) da će tako izdržati praženjenje od 20 sati (3 A × 20 h = 60 Ah). No isti taj akumulator ako se prazni jačom strujom, npr. 10 A neće se prazniti tom strujom 6 sati (iako bi linearno matematički to bilo 10 A × 6 h = 60 Ah). Zbog stvarnih procesa koji se dešavaju u akumulatoru (unutarnji otpor, zagrijavanje, itd.), veće jačine struje pražnjenja neće postići istu radnu efikasnost i nazivni kapacitet akumulatora.
 

ponedjeljak, 15. listopada 2018.

Prirubnice

Isti Virago modeli proizvodili su se u različitim varijantama snage. Npr. xv535 se proizvodio u četiri različite varijante:koju snagu će motor imati određuje i promjer (prirubnice) tj. dovoda zraka u rasplinjač.
Prirubnice za snagu motora od 25kW (određeni promjer)

Prirubnice imaju oznake A i B (prednja i stražnja)
Prirubnice za snagu od 34kW su: 2GV-13586-02-00 (stražnja) i 2GV-13596-01-00 (prednja), a za snagu od 20kW su: 3BR-13586-03-00 (stražnji) i 3BR-13596-02-00 (prednja).

Regler


The entire electronic system of the motorcycle (battery, lights, starter, etc.) is based on direct current (DC), so it is necessary to transform three-phase alternating current (voltage) from the generator to direct current, and for this the regulator/rectifier (abbreviated: regler or only R/R for short) is used.
 
In fact, the regler combines two electronic circuits/functionalities within the same electronic device. The first is a rectifier that converts alternating current to direct current (voltage). It has 6 diodes (two per phase) that pass current only in one direction (full phase rectification). The second part is the regulator that makes sure that the output voltage level does not exceed an upper voltage threshold of 14,6V in order to protect the battery from overvoltage and consequent damage.


xv125-xv250

PartCodeProductionModels
R/R47X-81960-A11988-1990xv125,xv250
3DM-81960-001991-1997xv125,xv250
3DM-81960-011998-2018xv125,xv250

regulator/rectifier 47X-81960-A1
(SH569-12)

regulator/rectifier 3DM-81960-01-00
(SH661-12)


xv400-xv1100

PartCodeProductionModels
R/R42X-81960-A01987-1991xv535,xv750,xv1000,xv1100
42X-81960-A11992-1996xv400,xv500,xv535,xv700,xv750,xv1000,xv1100
3JB-81960-011997-2001xv500,xv535
3LP-81960-011998-2000xv750,xv1100

regulator/rectifier (R/R) 42X-81960-A1


regulator/rectifier with cooler (R/R) 3JB-81960-01

regulator/rectifier 3LP-81960-01

 
Three white (sometimes yellow) wires with alternate voltage from stator go to regler. Output from regler is one red wire (positive pole of regulator) while negative pole is metal regler housing itself and it is mounted on (and electrically connected to) motorcycle construction (or there is a black ground wire).

This device gives to motorcycle the power of cca 250W (from 220W to 280W depending on speed).


Diode (Shunt) and MOSFET regulators/rectifiers

As for the internal construction, there are regulators built with diodes and others that use MOSFET transistors. Yamaha Virago uses older regler type that shunt (lead to ground) current when the voltage exceeds the threshold level to protect the battery. The main difference between these two types is the speed of switching and as a consequence - heat production. The diode regulator has slower switching circuits and requires more energy, produces a lot of heat and the voltage varies more. The more sophisticated MOSFET controller switches extremely fast and requires much less control energy resulting in a cooler unit and more stable voltage.

Diode (shunt) regulator/rectifier
MOSFET regulator/rectifier


Note: This device outputs electrical power of about 250 W (from 220 W to 280 W depending on speed). It supplies motorcycles' electrical devices and charges battery in the same time. The engine in idle mode does not produce enough power for all components (ignition, lights) and charging the battery. So, in idle mode more power is spent than produced for charging. For normal charging the motorcycle driving is required.

Burned regler


 

Ispravljač



Kako se cijeli električni sustav motocikla (akumulator, svjetla, starter motor, itd.) temelji na istosmjernoj struji, potrebno je izmjenični napon koji se stvara u generatoru (alternatoru) ispraviti u istosmjerni napon, a tome služi ispravljač/regulator (eng. regler, regulator/rectifier ili skraćeno samo R/R; njem. Regler, Gleichrichter, Lichtmaschinenregler).

Ovdje se zapravo radi o dvije elektroničke funkcionalnosti smještene unutar fizički jednog elektroničkog sklopa. Prvi dio je ispravljač (eng. rectifier) koji ispravlja izmjenični napon u istosmjerni. (Ispravljač u sebi sadrži 6 dioda - punovalni trofazni ispravljač.), a drugi dio je regulator (eng. regulator) koji se brine da izlazni napon ne bude veći od 14,6 V čime se štiti da se akumulator ne prepuni i ošteti.
 

xv125-xv250

DioKôdPeriod proizvodnjeModeli
R/R47X-81960-A11988-1990xv125,xv250
3DM-81960-001991-1997xv125,xv250
3DM-81960-011998-2018xv125,xv250

ispravljač i regulator 47X-81960-A1
(SH569-12)

ispravljač i regulator 3DM-81960-01-00
(SH661-12)


xv400-xv1100

DioKôdPeriod proizvodnjeModeli
R/R42X-81960-A01987-1991xv535,xv750,xv1000,xv1100
42X-81960-A11992-1996xv400,xv500,xv535,xv700,xv750,xv1000,xv1100
3JB-81960-011997-2001xv500,xv535
3LP-81960-001998-2000xv750,xv1100

ispravljač i regulator (R/R) 42X-81960-A1
SH559A-12 (SH je oznaka tipa = SHUNT)

ispravljač i regulator (R/R) 3JB-81960-01
sklop kod kojega je R/R uliven u hladnjak



xvs400-xvs1700 (DragStar)

DioKôdPeriod proizvodnjeModeli
R/R4JH-81960-011997-1997xvs400,xvs650
5BN-81960-001998-2000xvs400,xvs650,xvs1100,xvs1600,xvs1700
5KP-81960-002000-2017xvs400,xvs650


ispravljač i regulator (R/R) 4JH-81960-01
ispravljač i regulator (R/R) 4JH-81960-01

ispravljač i regulator (R/R) 5BN-81960-00
 
 
ispravljač i regulator (R/R) 5KP-81960-00
 
U ispravljač idu 3 bijele (nekada žute) žice iz statora generatora kojima se dovode tri faze izmjeničnog napona, a iz njega ide jedna crvena žica (pozitivan pol ispravljača) dok je samo kućište ispravljača negativni pol te je spojeno na metalnu konstrukciju motocikla (ili postoji zasebna crna priključnica). Napon na izlazu kreće se od nekih 13,8 V do 14,6 V ovisno o naponu koji daje izmjenični generator napona, a on ovisi o brzini rotacije magneta oko statora (brzini kretanja motocikla).


Diodni (Shunt) i MOSFET regulatori/ispravljači

Po izvedbi postoje regulatori koji su izvedeni korištenjem dioda i onih koji koriste MOSFET tranzistore. Yamaha Virago koristi starije diodne (Shunt) regulatore koji uzemljuju struju kada napon prijeđe graničnu vrijednost da bi zaštitio akumulator. Glavne razlike između ova dva tipa su u načinu odnosno brzini preklapanja i kao posljedicu toga - proizvodnji topline. Diodni regulator sporo prekida i zahtijeva više električne struje što daje puno topline i napon mu više varira. Napredniji MOSFET regulator izuzetno brzo preklapa i zahtijeva mnogo manje struje za kontrolu što rezultira hladnijim sklopom i znatno stabilnijim naponom akumulatora.

Diodni regulator/ispravljač
MOSFET regulator/ispravljač


Napomena: Ovaj uređaj daje motociklu električnu energiju snage od oko 250 W (od 220 W do 280 W ovisno o brzini). Time se napajaju i električni uređaji motocikla i istovremeno puni akumulator. Motor koji radi u praznom hodu ne daje dovoljan napon za rad svih eletričnih komponenti motocikla (paljenje, svjetla) i istovremeno dovoljno punjenje akumulatora. Dakle u praznom hodu više se iz akumulatora troši struje nego što se nadopunjuje. Za nadopunu akumulatora potrebno je da se motor vozi.

Izgoreni regler


 


Battery


Battery Voltage

A fully charged battery has a voltage of at least 12.6 V. At 12.2 V a battery is half full and at 11.9 V almost empty. The battery should be charged by voltage from 14.2 V to 14.4 V (not higher than 14.7 V). The battery should not be (deeply) discharged so that its voltage drops below 10.8 V (1.8 V per cell).

Battery current

The battery should be charged with a current strength of 10-20% of its capacity amount. Therefore, a 10 Ah battery should be charged with a current of 1 A to 2 A, but not a stronger current!

Yuasa 12AL-A2

Battery operation

The battery has two electrodes (two poles) where one pole (cathode = positive + pole) is connected to lead dioxide (PbO2) plates while the other pole (anode = negative - pole) is connected to pure lead (Pb) plates and they are immersed together in sulfuric acid (H2SO4 with concentration of 1.28 kg/l for a fully charged battery).

When discharging the battery, the sulfur deposits on the plates of both electrodes (process of sulfation) and crystallizes (lead sulfate PbSO4 is formed). Consequently by sulfur deposition the sulfuric acid concentration drops (from 1.28 kg/l for fully charged battery to 1.1 kg/l for empty battery).

The chemical reaction to discharge a battery is described by the following chemical relation:

The figure taken from the site https://www.schrack.hr


PbO2 (cathode) + 2H2SO4 (sulfuric acid) + Pb (anode) --> 2PbSO4 (lead sulfate) + H2O (water)

A reverse process occurs when the battery is charged, the crystallized sulfates from the plates break down (desulfation) and the dissolved sulfur increases the concentration of sulfuric acid.

Thus, electrolyte density is a reliable parameter for determining the amount of energy in a battery. In practice, electrolyte density measurement is carried out very simply with a bometer, refractometer, etc.

Battery discharge

The battery naturally discharges even when no power supplies are connected: eg GEL batteries discharge 2% per month at 20°C. For each additional 10°C the discharge increases by double.

When the battery is fully charged there should be no lead sulfate on the electrodes. However, with each charge and discharge cycle, a little amount of sulfate still remains on the electrodes, and this sulfate is also a major cause of battery aging, so batteries should always be kept full. If an empty battery is stored and not recharged for a long time, this sulfate crystalline structure will harden so much that it will no longer be able to dissolve it later. The same thing will happen if the battery is not fully charged for a long time, so that part of the surface of the plates will remain irreversibly sulfated and such deposits cannot be converted to pure lead and lead dioxide by any battery charging. The result is a smaller surface area of ​​the plates exposed to electrolyte, which permanently loses battery capacity.

Deep discharge

Deep discharges on classic batteries can be considered at some 50% of discharged capacity. Therefore, a battery with a capacity of 60 Ah should not consume more than 30 Ah. Deep discharges are not good for a classic battery. There are special (deep cycle) batteries that are tailored for deep discharges and can discharge up to 80% of their capacity (but they should not be completely discharged either). Deep discharge damages the battery in such a way that the active material is permanently removed from the lead plates, reducing their conductivity. The black/brown deposit at the bottom of the battery is the first indication that the battery has been frequently discharged deep.

Plate erosion and corrosion

During normal operation and regular and regular filling, it is impossible to avoid that part of the lead or lead dioxide does not fall off from the electrodes, so the mass of the electrodes decreases over time - this is the erosion of the plates. Enhanced or accelerated erosion of panels in a battery is called plate corrosion.

The erosion of the material is deposited at the bottom of the battery container and the deposit becomes thicker with time. As it is an electrically conductive material, a thick layer of precipitate can bind the electrodes and cause a short circuit between the battery panels.

Normal erosion is controlled by limiting the discharge depth, reducing the number of discharge cycles, and taking care of the battery operating temperature. Intense corrosion, in turn, is caused by long overcharging of the battery. In contrast, charging with too little current will result in ions in the electrolyte being unable to dissolve lead sulfate in a high-quality and fast manner.

Battery stratification

Stratification (separation into layers) is a process that happens if the battery is not charged with sufficient current (or if it is never charged to more than 2/3 of its capacity). At low charging currents, low ion flow will not mix acidic electrolyte enough, so water and acid will separate so that heavier acid sinks to the bottom and water remains at the top. The concentration of acid at the top becomes too low, and at the bottom too high which causes the top of the plates to sulfate and the bottom of the plates to intensify.

Stratification is avoided in batteries with a liquid electrolyte by deliberately shorter charging pulses at higher voltage and by deliberately induced intensified extinguishing in which gas bubbles thoroughly stir the electrolyte. This is used by smart chargers with pulse charging modes.

In closed batteries (non-liquid electrolyte, eg GEL), no stratification occurs.
 

Peukert's law

Peukert's law is about how the capacity of a battery depends on the amount of current the battery empties. Specifically, the battery capacity is not linear with the discharge current. Eg. a battery with a rated capacity of 60 Ah implies that it is discharged with a current of 3 A (20 times less than the capacity output) and will thus withstand 20 h (3 A × 20 h = 60 Ah). But the same battery if emptied by a stronger current of, for example, 10 A will not deliver this current for 6 hours (although linearly mathematically it is also 10 A × 6 h = 60 Ah). Due to the actual processes occurring in the battery (heating, etc.), higher charging currents will not achieve the same efficiency and hence the rated capacity of the battery.

nedjelja, 14. listopada 2018.

Spark plugs


According to original User's manual for our Viragos we should use spark plugs from Japanese manufacturer NGK: type BP7ES for Virago from xv400 to xv1100 - these are spark plugs without built in resistor (suplement is DENSO W22EP-U) and C6HSA fro xv125 and xv250.

Spark plug NGK BP7ES (xv400 - xv1100) - Φ=14 mm
Spark plug NGK C6HSA (xv125 - xv250) - Φ=10 mm

The corresponding spark plugs with internal resistor have label BPR7ES (of course, letter "R" in label stands for RESISTOR). This additional internal resistance built inside spark plug is intended for alleviating the radio-interference (disturbance and noise) of radio receiver. Since we do not have radios on our Viragos which could be disturbed by spark plugs, we do not need this internal resistor. Moreover, existing original Virago spark-plug connectors already do have its own ceramic resistors of 5 kΩ so additional resistance is not needed. If we used these connectors without internal resistor, maybe then it would be meaningful to use spark plugs with resistors.
DENSO W22EP-U

If one used spark plugs NGK BPR7ES (with internal resistor) in Virago that would work as well. The additional resistance from spark plug in ignition circuit lowers the voltage for spark ignition, but the total voltage is high enough (cca 15 kV) and that eventually would not prevent the creation of spark. The spark is ignited in this case too, but it is smaller, and lasts longer. In some cases that can even be required. If you want to setup the motorcycle to operate with leaner mixture (more air less fuel) then longer spark is more appropriate for complete combustion of mixture.

According to Haynes manual the spark plug cap resistance:
  • xv500 and xv535 models - 10 kΩ
  • xv700 - xv1100 models - 5 kΩ
  • TR1 model - 7 kΩ

YICS

Japanese even experimented with this concept of longer sparks in period 1981-1986 on some of their models - this system is called YICS (Yamaha Induction Control System). For example Yamaha on model XJ700 (in 1985.) used 10 kΩ resistance inside the connector plus spark plug with 5 kΩ internal resistor in order to achieve this effect.

Yamaha XZ550 - carburetor and YICS

The explanation of letters on NGK spark plugs

NGK (BP7ES)

B --> Thread diameter = 14 mm
P --> Construction = Projected Insulator Type
(K) --> Construction = Hex size 5/8 in, projected tip
(R) --> Construction = Resistor Type
7 --> Heat Rating Number = 2 Hot -> Cold
E --> Thread Reach = 12.7 mm
S --> Firing End Construction = Standard 2.6 mm diameter center electrode
(VX) --> Firing End Construction = High performance platinum
(K) --> Firing End Construction = 2 ground electrodes
(N) --> Firing End Construction = Special side electrode
(-11) --> Gap Width = 1.1 mm (0.044 in)

Svjećice


Prema originalnim korisničkim uputama za naše Virago motocikle trebali bismo koristiti svjećice japanskog proizođača NGK: tip BP7ES za Virago od xv400 do xv1100 - to su svjećice bez u sebi ugrađenog otpora (zamjenske su DENSO W22EP-U).

Svjećica NGK BP7ES (xv400 - xv1100) - Φ 14 mm
Svjećica NGK C6HSA (xv125 - xv250) - Φ 10 mm

Iste takve svjećice s otporom imaju oznaku BPR7ES (naravno "R" u oznaci stoji za RESISTOR - otpor). Taj otpor dodatno ugrađen u svjećice prvenstveno služi za uklanjanje radijske interferencije (ometanje i šum radio-prijamnika). Kako mi na svojim motociklima nemamo radio kojemu bi iskrenje svjećice smetalo, tako nam taj dodatni otpor nije potreban. Štoviše, postojeći Virago konektori za svjećicu (lulice) u sebi već imaju ugrađen keramički otpor od nekih 5 kΩ tako da još dodatni otpor u svjećicama nije potreban. Kada bi se koristili konektori bez tog otpora, onda bi imalo smisla koristiti svjećice s unutarnjim otporom.
DENSO W22EP-U

Ako bi se u Virago upotrijebile svjećice NGK BPR7ES (dakle s unutarnjim otporom) to bi također radilo. Dodatni otpor od strane same svjećice u električnom krugu za paljenje smanjuje napon na dijelu svjećice za iskrenje, no kako je ukupan napon iz indukcijskih svitaka prilično velik (oko 15 kV) to ne znači da ne bi došlo do stvaranja iskre. Iskra nastaje i u tom slučaju, ali je nešto manja, no zato duže traje. U određenim slučajevima to čak može biti i poželjno. Npr. ako se želi podesiti motor da radi s nešto siromašnijom gorivom smjesom (više zraka manje benzina) tada je duža iskra povoljnija za kompletno sagorjevanje takve smjese.

Prema Haynes servisnoj knjizi otpor lulice:
  • xv500 i xv535 model - 10 kΩ
  • xv700 - xv1100 modeli - 5 kΩ
  • TR1 model - 7 kΩ

YICS

Japanci su čak i eksperimentirali s tim konceptom u periodu 1981-1986 na nekim svojim modelima - tzv. sustav nazvan YICS (Yamaha Induction Control System). Yamaha je npr. kod modela XJ700 (1985. god) upotrijebila 10 kΩ otpor u konektoru + svjećica s 5 kΩ unutarnjim otporom kako bi postigla taj efekt.

Yamaha XZ550 - rasplinjač s YICS sustavom

Tumačenje oznaka na NGK svjećicama

NGK (BP7ES)

B --> Thread diameter = 14 mm
P --> Construction = Projected Insulator Type
(K) --> Construction = Hex size 5/8 in, projected tip
(R) --> Construction = Resistor Type
7 --> Heat Rating Number = 2 Hot -> Cold
E --> Thread Reach = 12.7 mm
S --> Firing End Construction = Standard 2.6 mm diameter center electrode
(VX) --> Firing End Construction = High performance platinum
(K) --> Firing End Construction = 2 ground electrodes
(N) --> Firing End Construction = Special side electrode
(-11) --> Gap Width = 1.1 mm (0.044 in)

subota, 13. listopada 2018.

Carburetors synchronization


The vacuum inside carburetors is important for engine operation because a fuel becomes vaporized easier on lower pressure. For proper engine operation front and rear carburetors in block have to be synchronized, i.e. they must have the same vacuum level of -0,3 bar.

The vacuum is measured in intake manifolds through small pipes intended for that purpose. On these pipes there are rubber caps. On some Virago bikes one of these pipes can be used for controlling Air Induction System (AIS) or some other system and then for measuring the vacuum it is necessary to temporary remove a rubber pipe leading from intake manifold's pipe to AIS.

Barometers showing the vacuum from 0 to -1 bar should be connected to intake manifold's pipes. Then the engine should be started and run in idle mode (cca 1200 rpms). Between carburetors there is one screw which is used for tuning the throttle ratio between two carburetors. Using this screw one should equalize both carburetor to show the same vacuum of -0,3 bar.

two carburetors BDS34 (xv535) synchronization
the vacuum equalization
When engine works, moving pistons produce pressure pulsation. Barometers on input tubes usually have valves which can be used to reduce the input flow in instrument and to stabilize the pressure for easier reading.

Sinkronizacija rasplinjača


Kod nižeg tlaka lakše dolazi do vaporizacije goriva pa je ispravan podtlak u cilindrima važan za rad motora. Prednji i stražnji rasplinjači u bloku moraju biti u sinkronizmu, tj. moraju imati podjednak podtlak od -0,3 bar.

Podtlak se mjeri u prirubnicama (eng. intake manifolds) kroz ispust namijenjen tome. Na tim ispustima su gumene kapice. Kod nekih verzija Virago motocikala jedan od tih ispusta može se koristiti za upravljanje sustavom za ubrizgavanje zraka (eng. Air Induction System, AIS) ili neki drugi sustav pa je za ovo mjerenje potrebno privremeno ukloniti gumeno crijevo koje vodi iz prirubnice u AIS.

Na ispuste na prirubnicama spoje se barometri koji prikazuju podtlak od 0 do -1 bar, uključi se motor i u praznom hodu na nekih 1200 o/min gleda koji se podtlak stvara u svakoj prirubnici. Između rasplinjača u bloku nalazi se jedan vijak kojim se podešava odnos gasa između jednog i drugog rasplinjača. Njime se treba podesiti da u oba rasplinjača bude jednak (-0,3 bar) podtlak u praznom hodu.

Sinkronizacija rada dvaju rasplinjača
izjednačavanje podtlaka u prirubnicama
Kod rada motora, kako se cilindri pomiču tako pulsira i tlak u prirubnicama. Instrumenti na dovodnoj cijevi imaju ventil kojim se dovod u njih može smanjiti čime se podtlak stabilizira i smiruje kazaljka za lakše očitanje.

nedjelja, 7. listopada 2018.

AIS


When the mixture of gasoline and air burns inside cylinders it could happen that not all of mixture is fully burned and some amount of gasoline exits the cylinders through exhaust pipe into atmosphere, and that makes pollution. AIS (Air Induction System) is a system for reduction of pollution i.e. emission of hydrocarbons by means to induct the fresh air into exhaust pipes forcing rest of gasoline to finish burning in exhaust pipes. The regulative of some countries require from motorcycles to have such a device in order to reduce environmental pollution.

Yamaha xv535 Virago - 1987-1989
the exhaust without AIS

Yamaha xv535 Virago - from 1990
the exhaust with AIS
On xv535 Virago model the AIS system resides under the left side cover (#18). AIS is controlled by the vacuum (low pressure) conducted from intake manifold (vacuum is generated by piston movement). On diagram this is rubber hose #42 which is connected to front cylinder intake manifold. The rear cylinder small connector is closed with rubber cap and not used for control of AIS. The air from AIS is by smaller metal pipes (#32 and #33) conducted to front and rear exhaust pipes where afterwards burning occurs.

Yamaha xv535 Virago AIS components

Yamaha AIS does have so called reed valve (#27). This valve is one way gate that allows fuel mixture to be sucked into the intake port but not get pushed back out when the piston reverses direction.
 
The consequence of afterwards burning is the increase of temperature in exhaust pipes and muffler. Also the backfire could occur specially during deceleration when vacuum in intake manifolds is maximal.

Yamaha xv750 Virago - 1984-1987
the exhaust without AIS
Yamaha xv750 Virago - from 1988
the exhaust with AIS

AIS is intended for reduction of environment pollution and does not affect the efficiency of engine operation because it does not affect internal engine combustion.

Yamaha xv535 Virago - 1996
AIS pipes between cylinders

air from AIS lead to front exhaust port

left side cover under which the AIS resides

AIS system under left side cover (uncovered)

hoses for conducting air into exhaust pipes and right vacuum hose for controlling the AIS
(leads vacuum from first cylinder into AIS)